	of Printed Pages : 4			Define two way slab.	(CO-1)
Roll No		170751 C	2.13	Why distribution steel is provided in one w	ay slab? (CO-1)
	5th Sem./ Civil Engg. Subject: Reinforced Concrete drawi : 3 Hrs. M.	ng M · 100	Q.15	Define singly reinforced beam. Define over reinforced beam.	(CO-2) (CO-2)
111110	SECTION-A	•		Define long column.	(CO-3)
Note:	Objectives questions. All questions are co (10x1=10)	ompulsory C	Q.18 Q.19	Define effective length of column. Write the two condition for use of mat foundatio Define portal frame.	(CO-4)
Q.1	(Course Outout If the ratio of long span to short span isslab is referred as two way slab.	, then , (CO-1)		What are the factors to be considered while se steel frame? Write any four advantage of AutoCAD.	electing a (CO-4) (CO-5)
Q.2	Main steel is provided along short span in salb.	(CO-1)		Define transverse reinforcement. SECTION-C	(CO-3)
Q.3	Maximum diameter of the reinforcing bars should not exceed of overall thickness	ss of slab. (CO-1)		Short answer type questions. Attempt questions.	5x8=40
Q.4	Tension in cantilever beam is at	(CO-2)	2.23	As pe I.S. specifications, write the pe	
Q.5	Upto 10m span, span to effective depth rat singly supported beam is	(CO-2)	Q.24	deflection in two way slab. Calculate the length of distribution bars for supported and way slab with following data:	or simply
Q.6 Q.7	Unit weight of P.C.C. may be taken as Minimum numbers of longitudinal bars prov rectangular column is CAD stands for	vided in a		supported one way slab with following data:- Size of room=3.57x7.5m, Thickness of slab=15 Bearing on wall=300mm, Thickness of wall=50	50mm ´
Q.8				Reinforcement details of HYSD bars	1 -
Q.9	A footing that covers entire area beneath st known as		0.25	Distribution Steel = 10 mm Ø bars @ 200mm c/ Calculate the length of main bars for simply s	
Q.10	Overlapping of bars may be taken as diameter of bar.	times (CO-3)		RCC beam having a clear span of 7m with bearing on wall and also show effective	350 mm span in
NI - 4	SECTION-B		200	diagram.	(CO-2)
Note:	Very Short answer type questions. Attemp parts	•		What is the role of AutoCAD in civil engineering Write a short note on framed cons	•
Q.11	•	G	x. <i>L</i> I	vinto a short hote on hamed cons	(CO-4)
	(1)	170751		(2)	170751

Q.28	Classify the column depending upon the line load.	of action of (CO-3)		Main reinforcement at 1/7)	= 3-20 mm Ø bar	rs (one bar bent up
Q.29	Write the comparison between one way slaway slab.	` '	Q.35	Stirrups = 8mm 2 leg		•
Q.30	What is reinforcement splicing? Explais specifications for design of beams.	n its I.S. (CO-2)		of a circular column Column details:		-
Q.31	Design the lateral ties for rectangular column x 600 mm with 8-20mm Æbars as longitudin			Diameter of cicular of Depth above G.L. = 2		olumn=4.0m
Q.32	draw the neat sketch also. Explain the five major commands used in A drawing.	(CO-1) utoCAD for (CO-5)		Plinth level above longitudinal bar = 8-2 Lateral Ties=8 mm	20 mm	n, Reinforcement
	SECTION-D			Footing details		
Note:	Long answer type questions. Attempt questions.	any three 3x10=30		Size of Footing=3.0 Thickness of footing		
	slab with the following data: Size of room=6mx4.5m, Thickness of war Thickness of slab=150mm Reinforcement along shorter span=10mm 110 mmc/c Reinforcement along longer span=10mm (180 mm c/c) Torsion reinforcement at all four corners in mesh of 10 mm bars @ 10 Ø mm c/c extended up to shorter span over 5.	(CO-1) III=400mm, Ø bars @ Ø bars @ the form of both ways	Q.36	Base reinforcement = 12 mm @ 300mm c/c both way. Assume that the main bars of the are going into 150m thick slabs. HYSD Fe 415 grade of steel used. Draw to suitable scale cross section of a he connection of two beams on both sides of a columns per following data: (CO-4 Column: Size=450mm x 450mm Main bars - 8-16 mm Lateral ties = 8mm Ø @ 200 mm c/c (double ties) Beam:		
Q.34	span and other near the support) of doubly beam with following data:	ort) of doubly reinforced		Size = 250mm x 400 mm (including 100 mm thick slab) Main bars = 5-20 mm Ø (2 bars bent-up at 1/7) Stirrups = 8mm 2 legged stirrups @ 250 mm c/c		
	Clear span=4.5m Bearing on wall = 400mm Thickness of Wall = 300 mm	(CO-2)		Anchor bat = 2-12 m Also show plan of co	m olumn.	
	Size of the beam = 300mm x 500 mm			(Note: Course outco	ome/CO is for one	ce use only)
	(3)	170751	(308)	0)	(4)	170751

	of Printed Pages : 4	470750	SECTION-B		
1 (01	1110	170753	Note: Very Short answer type questions. Attempt any		
	5th Sem./ C	ivil	ten parts	10x2=20	
Subject : Construction Management & Accounts			Q.11 Define Construction Management.	(CO-1)	
Time : 3 Hrs.		M.M.: 100	Q. 11 Define Construction Management.	(00-1)	
SECTION-A		.Δ	Q.12 Define Muster Roll.	(CO-10)	
Note	:Objective type question		Q.13 Define Material Schedule.	(CO-4)	
	compulsory	(10x1=10)	Q.14 Define work break down structure.	(CO-4)	
(Course Outcome/CO)		(Course Outcome/CO)	0.45.14% (1)	(00.7)	
Q.1	Define Engineer.	(CO-1)	Q.15 What is organisation?	(CO-7)	
Q.2	Define pre tender stage.	(CO-2)	Q.16 Explain real wages.	(CO-6)	
Q.3	What is rescheduling?	(CO-4)	Q.17 Explain inspection.	(CO-8)	
Q.4	Define PERT.	(CO-4)	Q.18 Define time rate system.	(CO-1)	
Q.5	Define Event.	(CO-4)	Q. 10 Denne une rate system.	(00-1)	
Q.6	Define float.	(CO-4)	Q.19 Define log book.	(CO-10)	
Q.7	What is SMB?	(CO-7)	Q.20 What is cash book?	(CO-10)	
Q.8	What is free float?	(CO-4)	Q.21 Define Survey report.	(CO-10)	
Q.9	Define aquittance roll.	(CO-10)	• •		
Q.10	What is hand receipt?	(CO-10)	Q.22 Define completion certificate.	(CO-10)	
	(1)	170753	(2)	170753	

SECTION-C

- Note: Short answer type questions. Attempt any five questions out of ten Questions. 5x8 = 40Q.23 Explain Significance of Construction Management. (CO-1) Q.24 Discuss resources of Construction Industry. (CO-1) Q.25 What are advantages and disadvantages of line and staff organisation? (CO-7)Q.26 What is need for inspection and quality control? (CO-1)
- Q.27 What are safety measures for drilling and blasting? (CO-9)
- Q.28 Discuss principles of inspection. (CO-8)
- Q.29 What is difference between bill and voucher? (CO-10)
- Q.30 Explain analysis of progress through operational analysis. (CO-7)
- Q.31 Explain cost time optimisation. (CO-7)
- Q.32 Differentiate between PERT & CPM. (CO-4)

SECTION-D

Note:Long answer type questions. Attempt any three questions. 3x10=30

- Q.33 Explain stages in Construction. (CO-1)
- Q.34 Explain different stages of construction planning. (CO-1)
- Q.35 Write a short note on [a] Location of equipment. [b] Organizing labour at site. (CO-5)
- Q.36 Write a short note on [a] conditions of construction workers in India. [b] Minimum wages act 1948. (CO-6)

(Note: Course outcome/CO is for office use only)

(3)170753 (2800)

(4)

170753

No. of Printed Pages: 4 Roll No. 170754/120754/30743 5th Sem. / Civil Subject: Soil Mechanism and **Foundation Engineering** Time: 3 Hrs. M.M.: 100 **SECTION-A** Note: Objective type questions. All questions are (10x1=10)compulsory Define Darcy's law. Define Consistency limits. Define relative Density. Describe sieve analysis. Define specific gravity. Define soil profile. Q.6 Define soil engineering. Define effective stress.

(1)

170754/120754/30743

Define Heaving.

Q.10 Define settlement.

SECTION-B

Note: Very short answer type questions. Attempt any ten questions out of twelve questions. 10x2=20

- Q.11 Describe the Engineering classification of soils.
- Q.12 Differentiate between sand and clay.
- Q.13 What is soil water.
- Q.14 Differentiate between void ratio and porosity.
- Q.15 Define Index properties of soil.
- Q.16 Define seepage velocity.
- Q.17 Define Confined Aquifier.
- Q.18 Define co-efficient of permeability.
- Q.19 Define laminar and Turbulent flow.
- Q.20 Define shear strength of soil.
- Q.21 State the principle of effective stress.
- Q.22 Define Consolidation.

(2) 170754/120754/30743

SECTION-C

- **Note:** Short answer type questions. Attempt any five questions out of ten. 5x8=40
- Q.23 Explain the principle of consolidation, with the help of soil spring analogy.
- Q.24 A fully saturated sample of soil has volume of 25 cc and a weight of 40g. After drying in the oven its weight is 28 gm. With the help of a phase diagram calculate:-
 - 1. e

2. W

3. n

4. S

- 5. rsat
- Q.25 With the help of a three phase diagram in terms of void ratio, prove that

$$rd = \frac{r}{1 + W}$$

- Q.26 Write a short note on the Textural classifications.
- Q.27 Differentiate between confined and unconfine, Aquifier.
- Q.28 Differentiate between Initial consolidation and primary consolidation.
 - (3) 170754/120754/30743

- Q.29 Explain rate of settlement.
- Q.30 Explain direct shear test for determining the shear strength of soil in laboratory.
- Q.31 Discuss the method used in determining the load carrying capacity of piles. Explain any one of them in detail.
- Q.32 Define Isobar and Pressure Bulb.

SECTION-D

- **Note:**Long answer type questions. Attempt any three questions out of four questions. 3x10=30
- Q.33 Describe plate load test for determining the settlement and its limitations.
- Q.34 Describe the settlement and its types and different causes of settlement.
- Q.35 Explain the particle size distribution curve and its characteristics features.
- Q.36 The falling head permeability test was conducted on a soil sample of 4cm diameter and 18 cm length. The head fell from 1.0m to 0.40m in 20 minutes. If the x-sectional area of the stand pipe was 1cm², determine the co-efficient of permeability.

(4800)

(4) 170754/120754/30743

INO	o. of Printed Pages : 4	III.	Define doubly reinforced beam. (CO-6)
Ro	II No 180751/030751/753	iv.	Define pre-stressed concrete. (CO-11)
	5th Sem. / Civil Engineering	V.	ite the purposes of distribution steel in one-way slab. (CO-8)
Subje	ect : Reinforced Cement Concrete Design and Drawing	vi.	Write the limit states considered in design (CO-4)
Time	e : 6 Hrs. M.M. : 150	vii.	Define unrestrained slabs. (CO-9)
Q.1	SECTION-A One word / Fill in the blanks / Very short answer type	viii.	Write the formula for the calculation of the depth of neutral axis (X_u) of a doubly reinforced beam. (CO-6)
	questions. All questions are compulsory.	ix.	Wr Define the curtailment of main reinforcement. (CO-8)
	(10x1=10)	Χ.	Define characteristic Load. (CO-4)
a.	(Course Outcome/CO) The arrangement of T-beam in which web lies above is called(CO-7)	xi.	How cracks are prevented at the corners of restrained slabs? (CO-9)
b.	called (CO-7) In stress- strain diagram, the curve for concrete is parabola up-to a strain of (CO-4)	xii.	Define nominal shear stress. (CO-3) SECTION-C
C.	The minimum grade of concrete for pre-tensioned work shall not be less than	Q.3	Short answer type questions. Attempt any five questions. 5x8=40
d.	IS: 456-2000 recommends that beam sections should be redesigned. (CO-5)	i.	Differentiate between one-way slab and two-way slab. (CO-9)
e. f.	Partial safety factor for steel is (CO-4) In RCC, steel reinforcement takes up stresses.	ii.	Define lever arm and how it is determined in a T-beam (CO-7)
g. h.	(CO-1) The shear reinforcement provided in the form of vertical bars is known as	iii.	A beam 250mm X 400mm (overall) reinforced is with 4-20mmØ bars placed at a distance of 50mm from the bottom of beam. Find out the moment of resistance. Use M 20 grade of concrete and fe 415 steel. (CO-5)
i.	When the length of slab is less than twice its width, it is said to be spanning directions. (CO-9)	iv.	Write the different classification of columns. (CO-10)
j.	As per IS 456-2000 Concrete grades lower than should not be used for RCC work. (CO-1)	v. vi.	Differentiate between WSM and LSM. (CO-2) A T-beam has flange width 1000mm, flange thickness 190mm, web thickness 230mm, effective depth 450 mm
	SECTION-B		and reinforced with 3128 mm² tension reinforcement.
Q.2	Very Short answer type questions. Attempt any ten parts. (10x2=20)		Calculate the ultimate moment of resistant of the T-beam. Use M 20 grade of concrete and Fe 500 steel. (CO-7)
i.	Define balanced reinforced beams. (CO-5)	vii.	Write the disadvantages of pre-stressed concrete. (CO-11)
ii.	Define neutral axis. (CO-1)	viii.	Write the function of bent-up bars. (CO-3)
	(1) 180751/030751/753		(2) 180751/030751/753

- ix. Calculate the depth of slab and effective spans of an R.C.C. slab simply supported on all the four sides of a room of size 4m X 5m (Clear size). The slab has to carry a live load of 3500 N/m². Take width of bearing as 300 mm. The corners of the slab are not held down, use M 20 grade of concrete and Fe 415 steel. (CO-9)
- x. Why the main steel is provided along the shorter span in one way slabs? (CO-8)

SECTION-D

Note: Long answer type questions. Attempt any three questions. 3x10=30

- Q.4 An R.C.C. beam 230mm X 460 mm (effective) is reinforced with 2-16 mm Ø bars as compression reinforcement and 4-20 mm Ø bars as tensile reinforcement receptively. Find the ultimate moment to resistance. Effective cover 40 mm. Use M20 grade of concrete and Fe 415 steel. (CO-6)
- Q.5 a) Draw the stress- strain curve for concrete in flexure compression (as per LSM). (CO-4)
 - b) A reinforced concrete column of diameter 500 mm is reinforced with 6-25 mm Ø bars and held in position at both ends (but not restrained against rotation) having unsupported length of 4 m. Find the safe load the column can carry. Use M20 grade of concrete and Fe 415 steel. (CO-10)
- Q.6 A simply supported R.C.C. slab over a room of size 3.5 X 7 m is supported on 230 mm thick masonry walls. Design the slab, if it is carrying a live load of 5 KN/m². Use M20 grade of concrete and Fe 415 steel. (CO-8)
- Q.7 a) Write the design steps of two-way slab. (CO-9)
 - b) Write a short note on over-reinforced beam section. (CO-5)

Note: Attempt any two questions

(25x2=50)

Q.8 Draw the sectional plan and sectional elevation (Assume suitable scale) for a rectangular column with isolated footing of uniform thickness with the following data:

(3) 180751/030751/753

Size of Column= 300 mm X 50 mm
Size of Footing= 1500 mm X 2000 mm
Thickness of footing = 500 mm
Depth below ground level = 1000 mm
Plinth level above ground level= 300 mm
Height of ceiling above plinth level= 3000 mm

Footing reinforcement:

reinforcement parallel to longer side = 12 mm \varnothing 250 mm c/c

reinforcement parallel to Shorter side = 16 mm \varnothing 200 mm c/c

Column reinforcement:

Main longitudinal bars in column = 6-20 mm \varnothing Lateral ties in column = 8 mm \varnothing @ 250 mm c/c

Q.9 Draw the sectional plan and sectional elevation (assume suitable scale) of a simply supported one-way slab with the following data:

Size of room= $3.5 \text{m} \times 7.0 \text{ m}$

thickness of slab=125 mm

Thickness of walls = 230 mm

Bearing on walls = 230 mm

main reinforcement= 12 mm Ø bars @ 180 mm c/c alternate bars bent up

Distribution steel = 10 mm Ø bars @ 23 0 mm c/c

Q.10 Draw the sectional plan and sectional elevation (assume suitable scale) of a RCC beam with the following data:

Size of beam = $300 \text{ mm} \times 500 \text{ mm}$

Clear span = 6500 mm

Bearing on walls= 230 mm

Main reinforcement = 4 - 20 mm Ø

Anchor bars = 2-12 mm

Shear stirrups = 8 mm Ø 2 legged @ 210 mm c/c Side face reinforcement= 1-10 mm Ø on each face (**Note:** Course outcome/CO is for office use only)

(4680)

(4)

180751/030751/753